Smart Integration of Climate Chamber Operations

Team 508 Design Review 6 March 26, 2019

Team Introductions

Cassie Roby Lead Engineer

Danny Carlos Design and Software Engineer

Daniel Lane Lead Design Engineer

Kyle Barber Project Manager

Sara Steele Systems Engineer

Sara Steele

Vinayak Hegde, Danfoss Turbocor Compressors Inc.

Background: Energy efficient technologies

Advisor

Neda Yaghoobian, Ph.D. College of Engineering

Background: Computational fluid dynamics

Sara Steele

Objective

To design a smart integration network and an observation system with remote accessibility for climate chamber tests.

Sara Steele

4

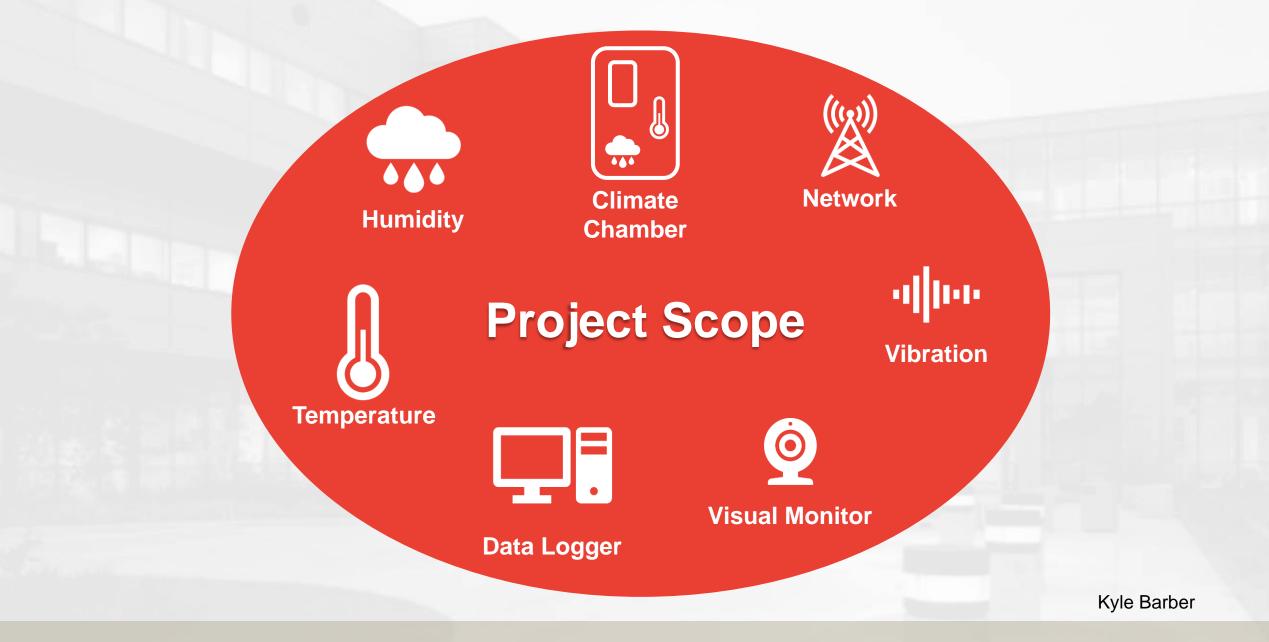
Project Background

Danfoss climate chambers experience random power failures during testing and test engineers are unaware until visiting the test site. User must manually collect data with USB drive.

Sara Steele

Project Outline

- To connect the Danfoss climate chambers and dataloggers to the accessible network
- To design and build a small scale prototype to demonstrate the software used to view the video footage of the climate chambers
- To research a camera that will withstand the environment in the chambers or design a possible insulation system

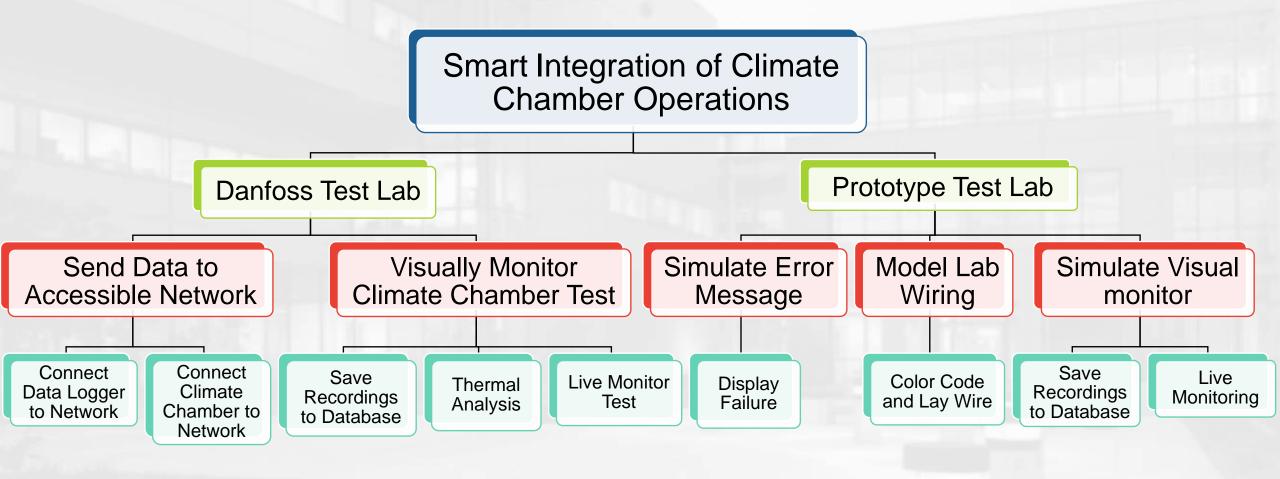

Sara Steele

Scope & Functional Decomposition

Next Presenter: Kyle Barber

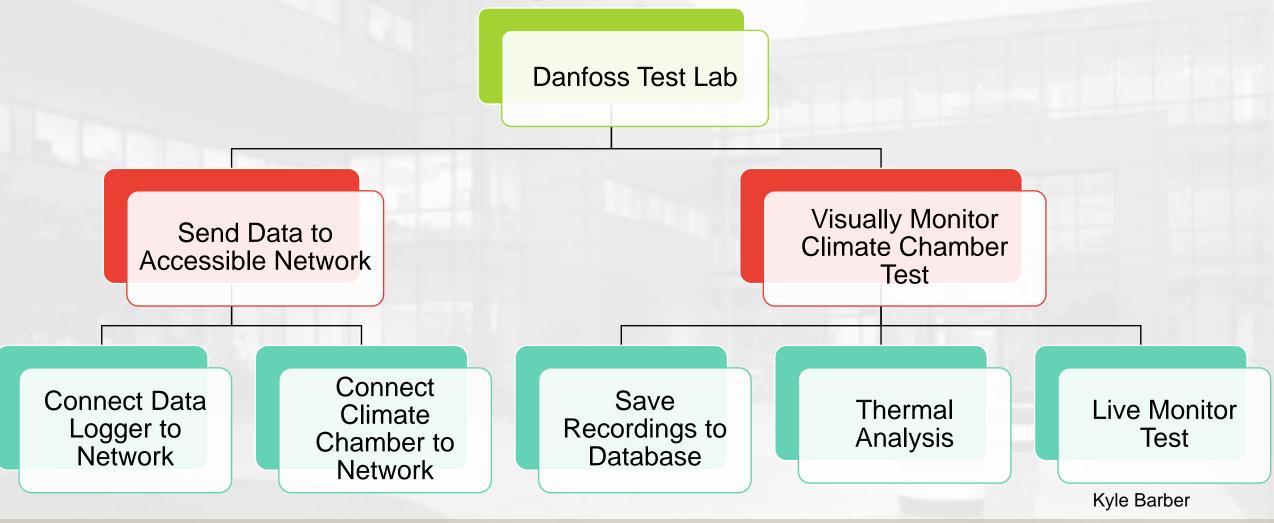
Department of Mechanical Engineering

Customer Needs

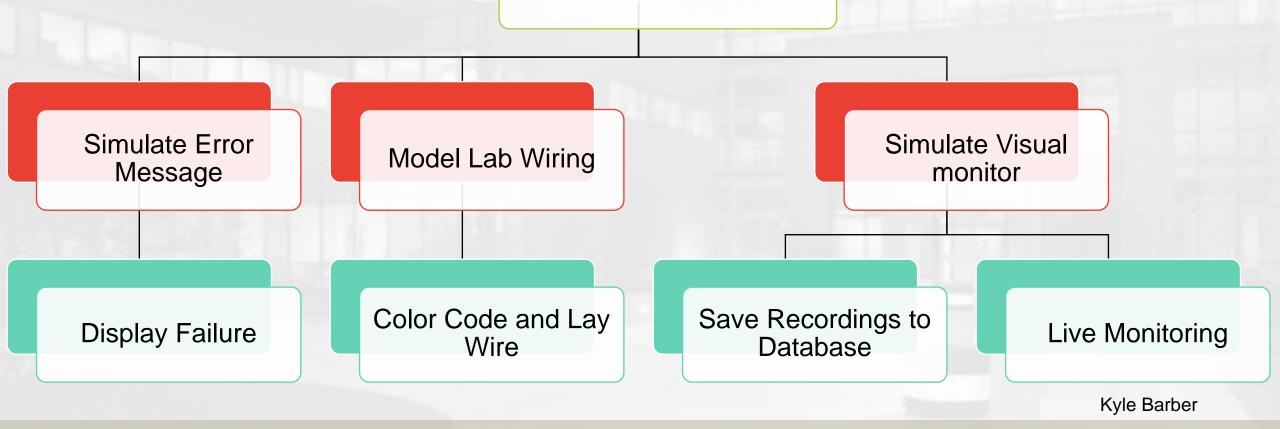

In order of importance:

- 1. To remotely transport data from climate chamber to user computer
- 2. Prototype of laboratory floor plan including microcomputer, camera, and tablet
- 3. Real time visual footage monitoring and recording of the test
- 4. Prototype is not to exceed \$4500

Kyle Barber


Functional Decomposition

Kyle Barber


Functional Decomposition

Functional Decomposition

Prototype Test Lab

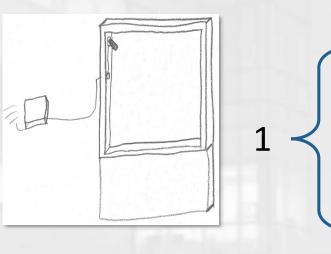
Department of Mechanical Engineering

Previous Work

- CAD select prototype parts
- 3D print select prototype parts
- Researched software to run cameras
- Researched climate chamber and data logger connections
- Received all parts
- Begun building prototype

Current Work

- Insulation and camera thermal analysis
- Manufacturing remaining parts
- Finish building prototype


Kyle Barber

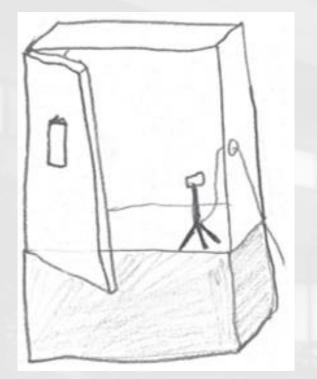
Conceptual Design

Next Presenter: Cassie Roby

Concept Generation

- One corner adhesive mounted camera
- Insulation around camera
- Scaled prototype of lab
- Live stream and recording
- Existing DL350 Series data logger
- Internet connection through Ethernet cable

2 Clinitic Charker bite Clinitic Charker bite


- One outside mounted camera (side)
- Scaled prototype of lab
- Live stream and recording
- Existing DL350 data logger
- Internet connection through Ethernet cable

Cassie Roby

Concept Generation

6

- One camera mounted on stand on chamber floor
- Insulation around camera
- Scaled prototype of lab
- Live stream and recording
- Existing DL350 data logger
- Internet connection through Ethernet Cable

Cassie Roby

Concept Selection ×,∱ v 5 Concept

Criteria Comparison Matrix

Normalized Criteria **Comparison Matrix** **Final Matrix**

Cassie Roby

17

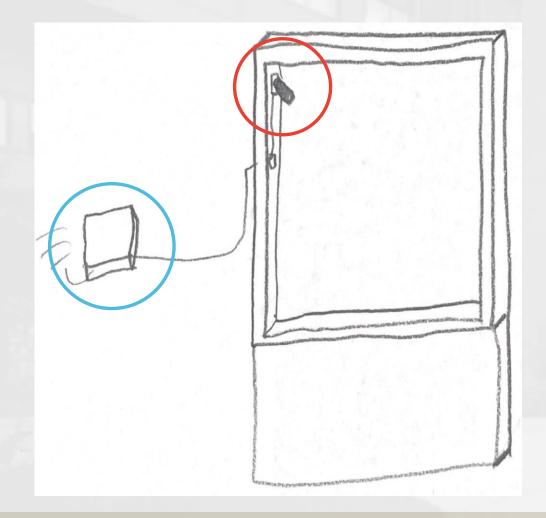
Selected

Analytic Hierarchy Process

	Final Matrix			
	Concept 1	Concept 2	Concept 6	
Cost	0.48	0.11	0.41	
Area View	0.29	0.30	0.14	
Temperature	0.16	0.50	0.19	
Frames Per Second	0.19	0.25	0.16	
Max Size	0.21	0.66	0.10	
Weight	0.24	0.10	0.62	
Relative Humidity	0.07	0.50	0.18	
Sum	0.28	0.35	0.26	

Final Matrix

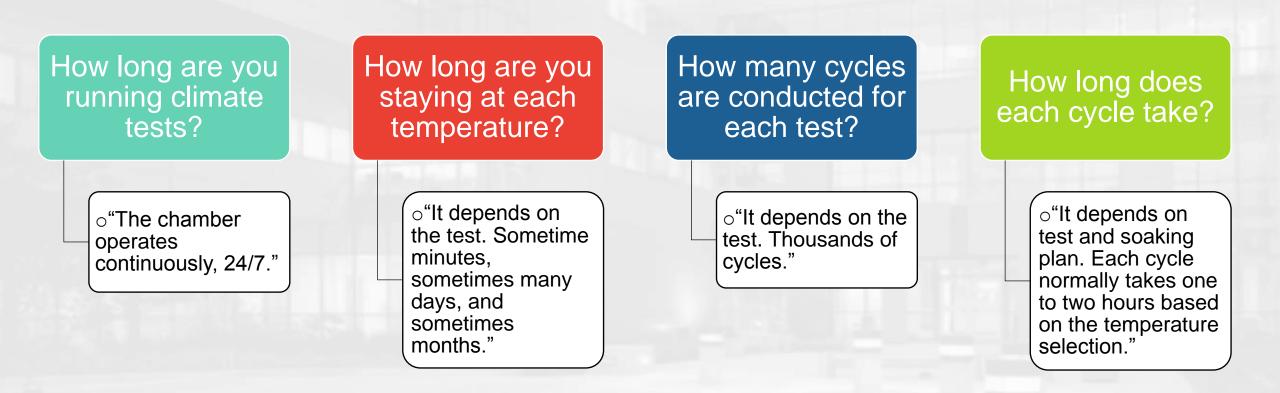
Alternative Value = $[Final Matrix]^T * \{P_i\}$



Cassie Roby

Department of Mechanical Engineering

Concept 1



- One corner adhesive mounted camera
- Insulation around camera
- Scaled prototype of lab
- Digital video recorder
- Live stream video
- Data logger connected to internet via Ethernet cable

Cassie Roby

Danfoss Climatic Chamber Endurance Tests

Answered by our sponsor, Vinayak Hegde.

Cassie Roby

Camera Research

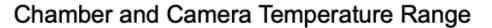
\$ 6,056.01

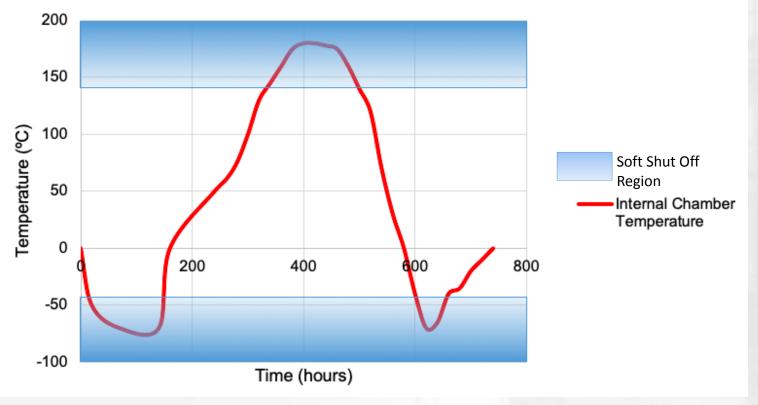
Custom soft shut off available

-40°C to 140°C

Larson Electronics Outdoor Security Camera

Internal Fog Prevention Heater Target Temperature Range: -73°C to 180°C


Cassie Roby


21

Camera Shut Off Regions

Soft shut off – the camera will temporarily go into a sleep mode while extreme temperatures are present.

Cassie Roby

Thermal Analysis – Insulation

Insulation works by slowing conductive heat flow and, to a lesser extent, convective heat flow.

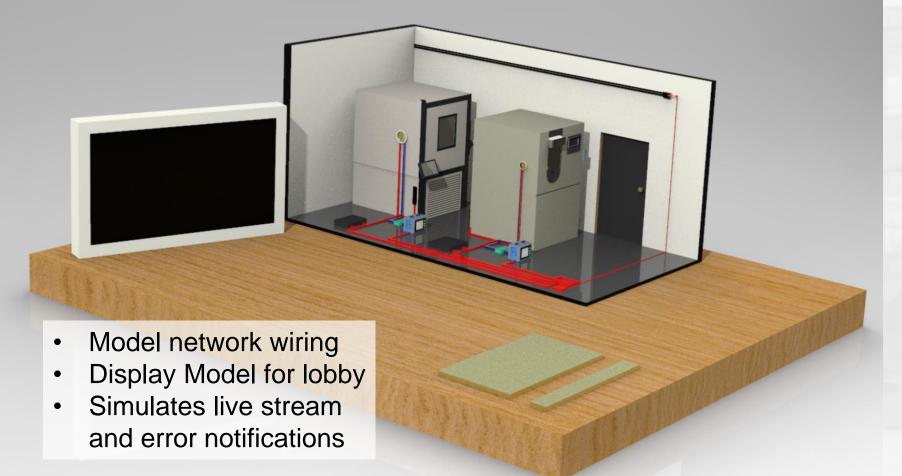
Static Material Insulation:

Will not work unless the camera is removed from chamber after a pre-determined amount of time.

Liquid Nitrogen insulation:

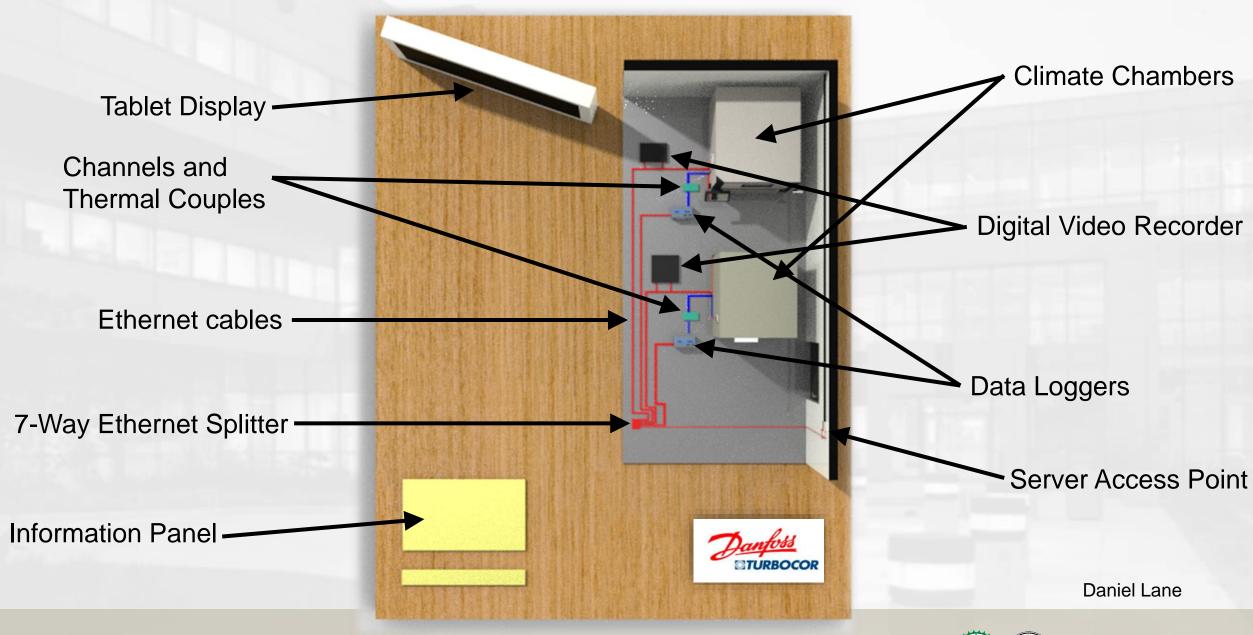
Must have liquid Nitrogen readily available Liquid at -196°C boils at 27°C A chamber at 180°C will boil off all liquid Nitrogen before it reaches the camera Currently not enough room at access point for large enough tubes

Cassie Roby

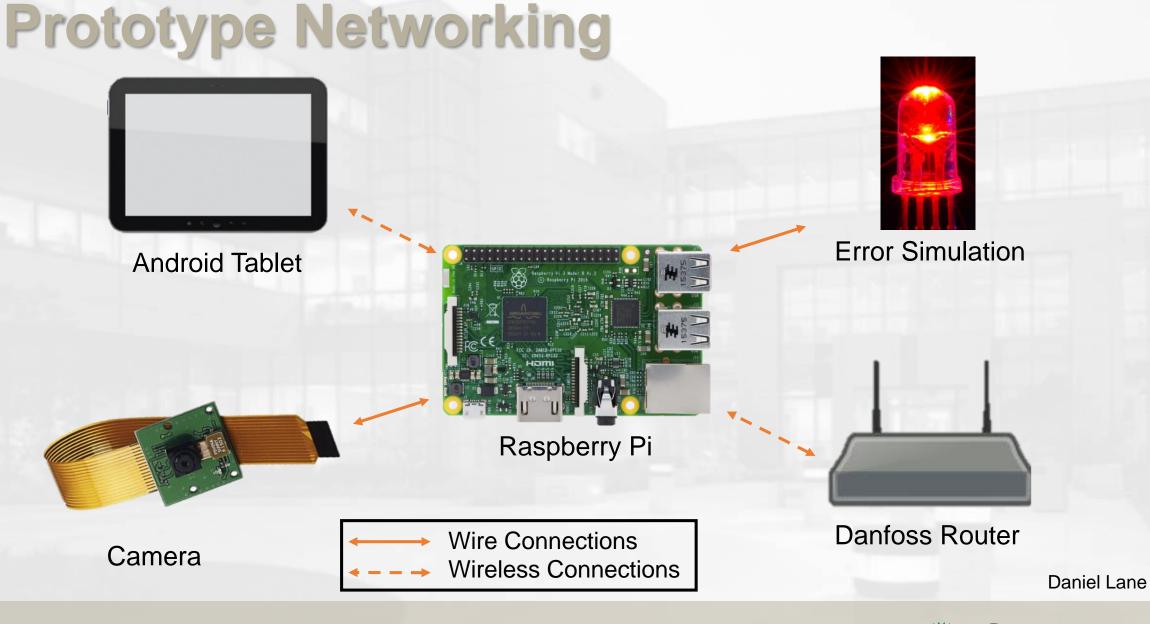

Prototype Detailed Design

Next Presenter: Daniel Lane

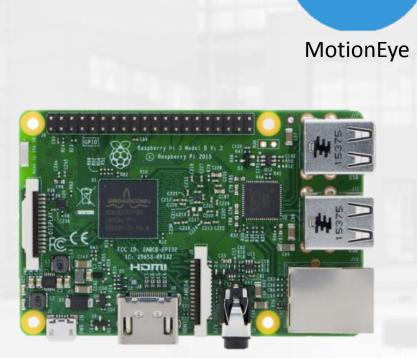
Department of Mechanical Engineering

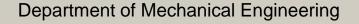


Prototype CAD



Daniel Lane

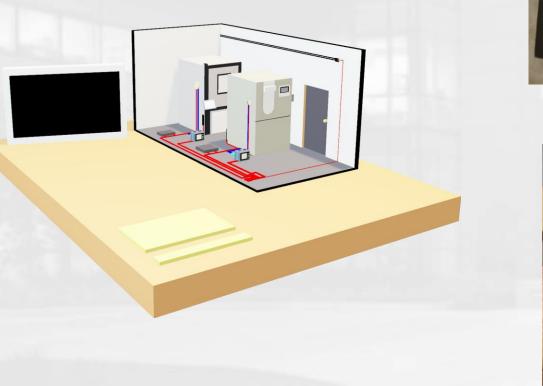



Software

MotionEye

- Surveillance software
- Compatible with any camera
- Live steam video
- Detect motion
- Save video for future use

Daniel Lane


Embodiment Design

Next Presenter: Danny Carlos

Department of Mechanical Engineering

Manufacturing

Danny Carlos

Danny Carlos

Project Management

We were able to reduce costs by:

- 3D printing at the Innovation Hub
- Utilizing tools from the senior design room
- Choosing a limited function tablet

\$4,129.24,92%

Spent Remaining

\$370.86,8%

Danny Carlos

Moving Forward

Jan 27, '19	Feb 17, '19	Mar 10, '19	Mar 31, '19	Apr 21, '19
	•	•		
			•	
			•	
				•
	 Jan 27, '19 			

Danny Carlos

Key Take Away

- 1. Two part project: Danfoss test lab and prototype test lab.
- 2. Waiting on Larson Electronics to give a quote on camera modifications.
- 3. Assemble prototype electronics and hardware.

Danny Carlos

References

Cincinnati Sub-Zero.Enviromental.(2017).Environmental Chamber Controller: User Manual. Sharonville, OH.GENTHERM

Thermotron.(2009).Environmental Chamber: Instruction Manual.Holland,MI.Thermotron

Multi-channel Data Logger LR8400, LR8401, LR8402. (n.d.). Retrieved from https://www.hioki.com/en/products/detail/?product_key=5613

Coley, P. (n.d.). Old V-Model Diagram. Retrieved October 03, 2018, from https://www.coleyconsulting.co.uk/old-v-model.htm

Department of Mechanical Engineering

Backup Slides

Department of Mechanical Engineering

		-										
Task Name	Sat 2/2	Sun 2/10	Mon 2/18	Tue 2/26	Wed 3/6	Thu 3/14	Fri 3/22	Sat 3/30	Sun 4/7	Mon 4/15	Tue 4/23	Wed 5/1
▲ Receive all parts					•							
Begin Spring Presentation 2												
Cut base for prototype and 3D print components			len l									
Program microcomputers for prototype												
Assemble prototype												
Reading review 2												
Advisor meeting 2												
✓ Complete prototype build									•			
Test and modify												
Create design report												
Create Operation manual and connection proposal												
create mini poster												
Reading Review 3												
Advisor Meeting 3												
Prototype testing complete							L. L.		•			
Create final project poster and presentation												
Edit prototype documentation												
Edit connection proposal and operation manual												
Prototype documentation, connection proposal, and operation manual complete											•	•
Prepare for final presentation												
Begin studying for finals												1
✓ Engineering Design Day												1
Study for finals												1
Reading Review 4												
Advising Meeting with Dr. McConomy												
Finals Week												
Graduation												
	-1											

Camera Links

https://www.jmcanty.com/product/high-temperature-surveillancecamera/

https://www.larsonelectronics.com/p-150537-.aspx?keyword=&gclid=EAIaIQobChMI2fnb65ui3gIVQ0OGCh2zUwnO EAkYBiABEgIJh_D_BwE

Hardware

- Three different types of hardware being integrated
- All network connection will be via Ethernet cable
- An IP address will be required to enable connectivity

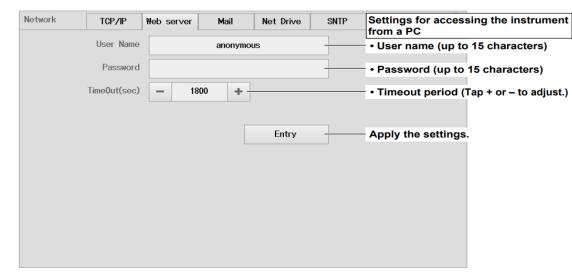
DL350 Data Logger

Cincinnati Sub Zero Climate Chamber

Thermatron-800 Climate Chamber

40

Department of Mechanical Engineering


DL 350 Data Logger (Web Server)

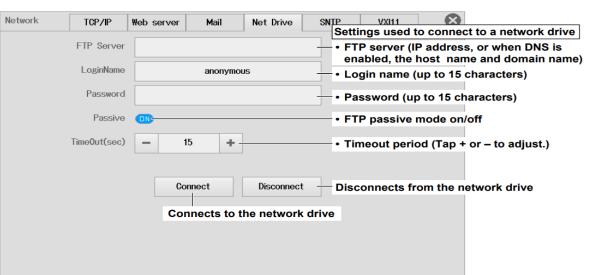
Utility Network Menu

1. On the waveform screen, tap MENU > Utility > Network. A network screen appears.

Configuring the Web Server (Web Server)

- 2. Tap the Web Server tab.
- **3.** Tap each item. Use the input box to set the items.

Department of Mechanical Engineering


DL 350 Data Logger (Network Drive)

Utility Network Menu

1. On the waveform screen, tap MENU > Utility > Network. A network screen appears.

Configuring a Network Drive and Connecting to It (Net Drive)

- 2. Tap the Net Drive tab.
- 3. Tap each item. Use the displayed input box to set the items.

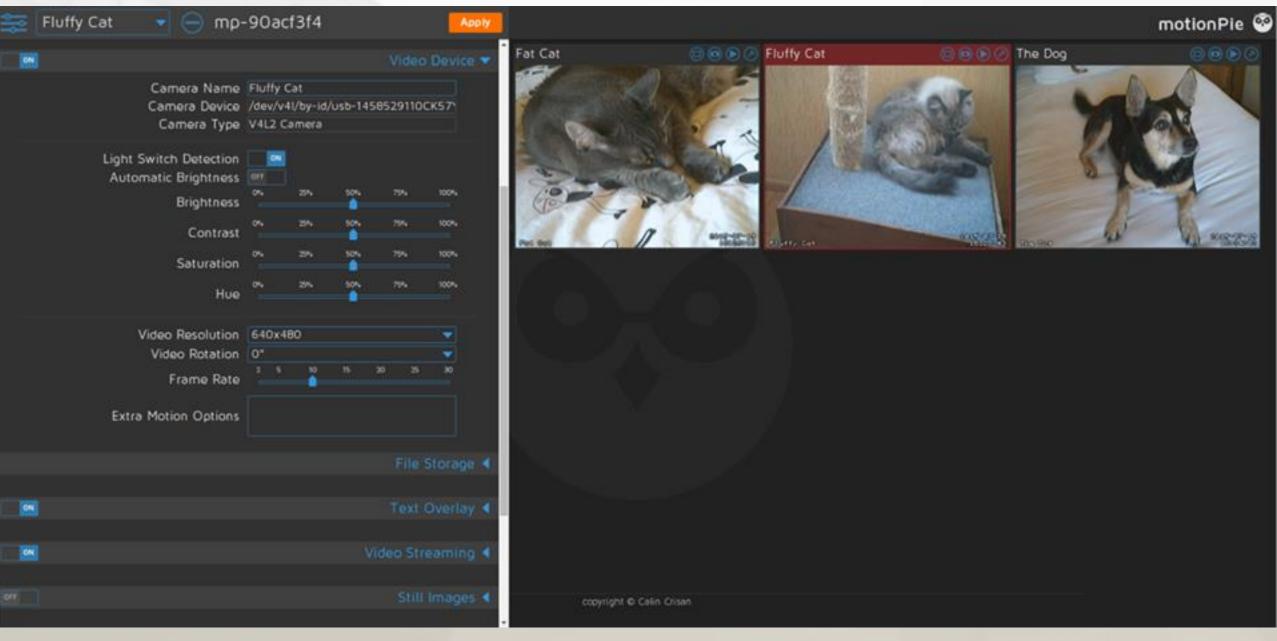
Cincinnati Sub-Zero Climate Chamber

- Virtual network computing (VNC) accessible with free software download
- Enter the IP address of the chamber

	Server: 192.168.	3.102.0	*
C En	cryption: Always ()	Н	Ψ
bout.	Options	0K	Cancel

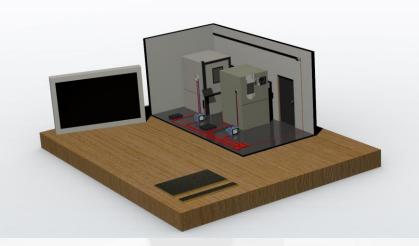
Thermatron Climate Chamber

Communication panel


COM2 (RS-232)		Network (TCP/IP)				Computer I/C	6	
Baud Rate:	19200	•	 DHCP Static IP Address: Gateway: 		🖲 232 🔘 485 🔘 GPIB				
Parity:	None	•	0.0.0.0 0.0.0.0		Use Internal Card				
	and a second		Subnet Mask:	DNS Server:			Address:	0	-
Word Length:	Eight	•	0.0.0.0	.0 0.0.0.0			Address.	U	
Stop Bits:	One	•	Computer I/O				Baud Rate:	19200	•
Terminator:	CR	•	TCP Port: 8888	Terminator:	CR	٠	Parity:	None	•
Send Acknowle	edgement		Command Compa	Send Ackn	owledgement		Word Length:	Eight	•
Cmd 8800 -		-	commond compo				Stop Bits:	One	÷
			Enable Web Server				Terminator:	CR	•
			Computer Name	:			Prefix	Send EC	N
			Workgroup			-	Send Acknowl	edgement	
			Chamber Description		ber Controller	•	Cmd	8800	•
			Map Network Drive	Disconne	ct Network Dr	ive]			
			IO Di	agnostics					

44

Department of Mechanical Engineering



Department of Mechanical Engineering

Department of Mechanical Engineering

Thermal Equations

Conduction

$$Q = -kA\frac{dT}{dx}$$

K: thermal conductivity (W/mK) A: Area (m^2)

Convection

$$Q = h_c A(T_{surface} - T_{fluid (air)})$$

 h_c = Heat transfer coefficient (W/ $m^2 K$) A: Area (m^2)

Radiation

 $Q = \sigma T^{4}$ $\sigma = \text{Stefan-Boltzman Constant } (5.6703 \times 10^{-8} W/m^{2} K^{4})$ T: Absolute Temperature (K)

Epoxy Adhesive

Permatex Cold Weld Bonding Compound

- -81°C
- 195°C
- Shear Strength 3000Psi

